
Error Handling in
Multiuser Systems

A Software Engineer’s Perspective

Sean Kerwin

Who Am I?

• Sean Kerwin

• FGCU ‘07

• Architect at INgage Networks

• First social networking site to become a
TV show!

• American Express OPEN forum site

Why Listen to Me?

• Curse of our field: the really interesting
stuff can’t be taught algorithmically

• Failure is the best teacher

• Other people’s failures tend to be more
entertaining

Why NOT Listen to
Me?

• Trust but verify

• I firmly believe: being a good developer
requires healthy skepticism

• Even if all I accomplish is to tick you off
enough that you set out to prove me
wrong about something, that’s pretty cool

Why Error Handling
Matters

• Therac-25

• Serious software bug

• Six people got
radiation overdoses

• Three deaths

What Am I Going to
Talk About?

• What do I mean by multiuser system?

• How do they differ from the desktop?

• What's an error?

• Avoiding errors

• General error-handling wisdom

What's a Multiuser
System?

• Websites are an easy answer

• APIs powering mobile applications

• The servers running AIM, ICQ, etc.

• Networked RDBMS

• The World of Warcraft servers

• Amazon's cloud services

• Control the capacity of one client to affect
the experience of others

• Control, not prevent. Usually.

• The classic error handling techniques no
longer works

How Are They
Different?

What’s an Error?

• ‘Exception’ and ‘error’ are not synonyms!

• Defining what is and isn't an error state is
an important part of your design

• But it will probably evolve

• Know your library or runtime

• Define expectations for your system

Know Your Library or
Runtime

• Is an exception an error?

• Is an error code an error?

• Socket programming in .NET is instructive

• Exceptions AND codes, and both can be
either errors or perfectly expected

Define Expectations

• Classes and method signatures are
contracts; be specific.

• Can this parameter be null?

• Distinguish ‘programmer errors’ from ‘user
errors’.

• Keep an eye out for ‘fundamental
assumption errors’.

Expectations ==
Specifications?

• Yes. And no. And yes!

• And no.

Best Error Handling
Approach?

Avoid them entirely.

Run Away!

Avoiding Errors

• Remove opportunities for error

• Properly structured code / unit testing

• Have a big toolkit:

• Use strong typing to your advantage

• Use functional styles to your advantage

• Use immutability to your advantage

Error-Averting Patterns

• Know the options for your language

• Template method pattern

• Know how to build a base class right

• Type-safe enum idiom

General Error-Handling
Wisdom

• Know when you’re
failing

• Fail safely

• Fail fast

• Avoid single points of
failure

• Log Intelligently

Wisdom:
Know You’re Failing

• Locally:

• Check return values

• Know what’s allowed

• Globally:

• Varies by platform/
framework/language/
library/etc.

Wisdom:
Failing Safely

• An electronic lock has a
serious failure. What
does it do?

• More relevant:
authentication in your
application

function authentication_is_valid(uid, password) {
	 var identityRecord = database_load(uid);
	
	
	 if (!valid_password(identityRecord, password))
	 	 return false;

	 if (identityRecord.isBlocked)
	 	 return false;
	 	
	 if (! identityRecord.allowsRemoteLogin)
	 	 return false;
	
	
	 return true;
}

function authentication_is_valid(uid, password) {
	 var identityRecord = database_load(uid);
	
	 if (identityRecord) {
	 	 if (!valid_password(identityRecord, password))
	 	 	 return false;

	 	 if (identityRecord.isBlocked)
	 	 	 return false;
	 	
	 	 if (! identityRecord.allowsRemoteLogin)
	 	 	 return false;
	 }
	
	 return true;
}

Wisdom:
Fail Fast

• If it’s written right, valid_password is slow.

• Do it last!

• Avoids un-needed work, but also allows for
more specific/useful errors

• Also aids in keeping a consistent state

Wisdom:
Single Points of Failure

• Redundant web servers and DBs, but single
router

• Large cluster with one ‘manager’ node

• Sometimes unavoidable?

Wisdom:
Log Intelligently

• Eventually log items become action items

• Respond intelligently

• Don’t just log errors

• But understand performance effects

• Who watches the watchmen?

Conclusion

• If you have multiple users, the bar is higher

• Don’t think of error-handling as ancillary

• Use the tools available to reduce risk

• Know you’re failing, and do it safely, quickly,
rarely, and loudly.

Questions?
How many surrealists does it
take to screw in a light bulb?

