
Scott Marks
Software Development Engineer in Test

Bing, Microsoft Corporation
scmarks@microsoft.com

March 31, 2011

Agenda
 Background

 Software testing

 Advantages and challenges

 Types

 FGCU vs. Microsoft

 Wrap-up

2

3

About me
 FGCU

 Graduated in Spring 2009 with BS in Computer Science

 Senior project

 Multiplayer online game using HYDRA game console

 Asteroid research

 Microsoft

 Started in Summer 2009

 Software Development Engineer in Test (SDET)

 Bing’s Cosmos

 Large scale distributed storage and processing system

4

Cosmos distributed system
 Used internally by Bing and other Microsoft groups

 Petabyte data storage and processing system

 ~50,000 servers

 Highly reliable storage platform

 Queryable, non-relational database

 SQL-like scripting language

 Purpose:

 Backend data processing for product features

 Drive product innovation with anonymous click logs

5

Cosmos execution

6

Web Server Job Server

Data &
Processing

Server

Data &
Processing

Server

Data &
Processing

Server

Data &
Processing

Server

Data &
Processing

Server

Data &
Processing

Server

Data &
Processing

Server

Data &
Processing

Server

Data &
Processing

Server

Data &
Processing

Server

Data &
Processing

Server

Data &
Processing

Server

Data &
Processing

Server

Data &
Processing

Server

Data &
Processing

Server

Data &
Processing

Server

Data &
Processing

Server

Data &
Processing

Server

Data &
Processing

Server

Data &
Processing

Server

Data &
Processing

Server

Data &
Processing

Server

Data &
Processing

Server

Data &
Processing

Server

Job

7

Advantages of software testing
 Minimizes risk

 Better stability and reliability

 Higher customer satisfaction

 Sooner bugs are found after creation, the easier they
are to locate and resolve

 Bugs found after release can be very expensive

 Actual cost of fix

 Long-term cost of customer impact

 Possible harm to users

8

Challenges of software testing
 Software can never be guaranteed bug-free

 Not enough resources
 High developer-to-tester ratio

 Near infinite combinations

 Limited test environment

 Software requirements could be wrong or missing

 Little or no documentation

 Typical testing metrics can be grossly misleading
 Bug counts

 Code coverage

9

Problem with code coverage
public static int GetHighestNum(int[] nums) {

 int highest = 0;

 for (int i = 0; i < nums.Length; i++)

 if (nums[i] > highest)

 highest = nums[i];

 return highest;

}

public static bool GetHighestNumTest1() {

 return GetHighestNum(new int[] { 3, 6, 2, 4 }) == 6;

}

public static bool GetHighestNumTest2() {

 return GetHighestNum(new int[] { -3, -6, -2, -4 }) == -2;

}

= nums[0]

Throw if null

or if length == 0

10

Succeeds with 100% coverage

Failure!

11

Code reviews
 Informal peer review

 Find bugs without tests

 Knowledge exchange

 Learn from others

 Provide visibility to others

 Upholds:

 Solid programming practices

 Consistency with conventions

12

Manual vs. automated testing
Manual Automated

Description Human-run tests Software-run tests

Categories Trial runs
Bug bashes

Build verification tests
Nightly tests

Measure of success Pass/fail or subjective Pass/fail

Cost of creation/setup Medium High

Cost of each run High Low

Cost of maintenance Low Usually High

13

Black vs. white box testing
Black box White box

Knowledge of underlying
production code

None High

Testing bias to
production code

None High

View of software User Developer

Appropriate use High-level testing:
Scenario, perf, analysis, …

Low-level testing:
Unit, functional

14

Common testing techniques
System-level analysis

& Testing in production (TiP)

Load, Stress & Performance

Scenario

Integration

Functional

Unit

15

Bottom-up order:
• Increasing scope
• Decreasing quantity

Unit testing
 Function/class-level testing

 Created alongside production code

 Test-driven development

 Locate bugs quickly after creation

 Fast running

 Entire suite should run in seconds

 Forcing function for good coding practices

 Bad code = difficult unit tests

16

System-level analysis

& Testing in production (TiP)

Load, Stress & Performance

Scenario

Integration

Functional

Unit

Some good coding practices
 Encapsulation

 Clear separation of class responsibilities

 Reduces software complexity

 Dependency injection
 Functions/classes explicitly ask for things it needs

 Avoid object creation inside business logic
 Only use “new” in Main() and factories

 Test-driven development (TDD)
 Iterative process

 Create unit tests before creating production code

 Write just enough production code to make the tests pass

17

System-level analysis

& Testing in production (TiP)

Load, Stress & Performance

Scenario

Integration

Functional

Unit

Mock objects
 Required for proper unit testing

 Replaces dependencies during testing

 Common dependencies:

 Network communication

 File manipulation

 Printing

 Time

 Use interfaces or abstract classes

 Easier test verification

18

System-level analysis

& Testing in production (TiP)

Load, Stress & Performance

Scenario

Integration

Functional

Unit

Example with no mocking
public class Printer {

 public void Print(string text) {

 /* ... */

 }

}

public void PrintText(Printer printer, string text) {

 /* ... */

 printer.Print(text);

}
Dependency

injection

Possible loss of
encapsulation

19

System-level analysis

& Testing in production (TiP)

Load, Stress & Performance

Scenario

Integration

Functional

Unit

Hard to test

Example with mocking
public interface IPrinter {

 void Print(string text);

}

public class PrinterImpl : IPrinter {

 public void Print(string text) {

 /* ... */

 }

}

public class PrinterMock : IPrinter {

 public string outputText;

 public void Print(string text) {

 outputText = text;

 }

}

public void PrintText(IPrinter printer, string text) {

 /* ... */

 printer.Print(text);

}

20

System-level analysis

& Testing in production (TiP)

Load, Stress & Performance

Scenario

Integration

Functional

Unit

Easy to test

Functional testing
 Feature-level testing within a component

 Unit testing with larger scale

 Includes external dependencies

 Can simulate hard to control dependencies

 Use APIs or test hooks to verify test results

 Example:

 Test the processing server’s ability to control vertex memory
usage

 Simulate vertex memory usage and total free system memory

 Verify vertex status via processing server’s API

21

System-level analysis

& Testing in production (TiP)

Load, Stress & Performance

Scenario

Integration

Functional

Unit

Integration testing
 Verify that 2+ binaries interact as expected

 First time components are tested outside of isolation

 Determine component dependencies early
 Avoid silos in design, coding and testing phases

 If neglected can cause delays or halt release

 Areas to test:
 Exposed APIs

 Protocols

 Cross-component features

 Example: test that the Cosmos job manager and job
vertices can communicate properly

22

System-level analysis

& Testing in production (TiP)

Load, Stress & Performance

Scenario

Integration

Functional

Unit

Scenario testing
 End-to-end system-level testing

 Customer story narratives

 Good, passing scenarios should be the team’s primary
goal

 Adds context to low-level testing

 Locate unexpected issues with sequences of features

23

System-level analysis

& Testing in production (TiP)

Load, Stress & Performance

Scenario

Integration

Functional

Unit

A Cosmos user scenario
Input raw data
to the cluster

Submit a job to
process that data

Wait for the job to
finish

Output processed
data to desktop

24

System-level analysis

& Testing in production (TiP)

Load, Stress & Performance

Scenario

Integration

Functional

Unit

Load, stress & perf testing

25

System-level analysis

& Testing in production

Load, Stress & Performance

Scenario

Integration

Functional

Unit

 Load Stress Performance

Test Run software with
expected amount of
work & resources

Find software’s
breaking point

Targeted scenarios
against defined
benchmarks

Confirm s
software…

Handles normal
situations

Handles excessive

load and/or limited
resources

Performs at expected
levels

Example Test a multiplayer
game server with a

nominal number of
active clients

Test a graphics -
intensive game with
a slow graphics card

Start a game and
confirm load time
meets requirements

System-level analysis
 Run the entire system to simulate production

 Multiple scenarios at the same time

 Analyze targeted scenarios within that environment

 Metrics can determine pass/fail

 Useful when system under test is highly complex and
component interactions are not well understood

26

System-level analysis

& Testing in production (TiP)

Load, Stress & Performance

Scenario

Integration

Functional

Unit

Testing in production (TiP)
 Use production environments for testing

 Use real users for test input

 Locate difficult to find real-world bugs

 Drive product innovation

 Mitigate risk to users while testing

27

System-level analysis

& Testing in production (TiP)

Load, Stress & Performance

Scenario

Integration

Functional

Unit

TiP practices
 Flighting

 Small percentage of users run pre-release software

 A/B testing

 Shadow testing

 Users experience stable production software

 Simultaneously run pre-release software in background with
user input

 Analysis

 Research production behaviors to find inefficiencies and bugs

 Automated failure analysis

28

System-level analysis

& Testing in production (TiP)

Load, Stress & Performance

Scenario

Integration

Functional

Unit

Other test types
 Configuration

 Various hardware, platforms, software, etc.

 Exploratory
 Manually explore software to locate bugs

 Usability studies
 Get user feedback on interface and functionality

 One-way mirrors or cameras monitor user behavior

 Beta
 Select users get early access to pre-release software in

exchange for feedback and bug notices

29

30

Testing at FGCU vs. Microsoft
Technique FGCU Microsoft

Code reviews Occasionally

Test plans Rarely

Manual tests Rarely

Automated tests

Unit tests

Scenario-driven tests Assignment Objective

31

Testing strategies in Cosmos
 Developer-to-tester ratio is about 2-3:1

 Test team uses different strategies

32

Test strategy Developers Testers

Feature testing Unit tests Functional
Integration
Scenario
Load/stress/perf

Analysis testing Unit tests
Functional
Others

Analysis
Metrics
TiP

33

Summary
 Tests are necessary to understand and minimize risk
 Defect prevention with unit testing
 Testing comes in many flavors

 Black vs. white box
 Manual vs. automatic
 Functional vs. analysis

 Strategy depends on the given situation
 System complexity
 Organization traits
 Risk to users

 Success is difficult to quantify
 Common metrics are misleading

34

Suggested materials
 How We Test Software at Microsoft

by Alan Page, Ken Johnston, Bj Rollison

 Software Testing 2nd Ed. by Ron Patton

 Your Software Has Bugs by Seth Eliot

 Code Complete: A Practical Handbook of Software
Construction 2nd Ed. by Steve McConnell

 Clean Code Talks by Misko Hevery
 Global State and Singletons

 Don’t Look for Things!

 Inheritance, Polymorphism, & Testing

 Dryad by Microsoft Research

35

http://www.hwtsam.com/
http://amzn.com/0672327988
http://blogs.msdn.com/b/seliot/
http://amzn.com/0735619670
http://amzn.com/0735619670
http://www.youtube.com/watch?v=-FRm3VPhseI
http://www.youtube.com/watch?v=RlfLCWKxHJ0
http://www.youtube.com/watch?v=4F72VULWFvc
http://research.microsoft.com/en-us/projects/Dryad/

Questions?

36

